SO 2 Emission Estimates Using OMI SO 2 Retrievals for 2005–2017

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant f-structures on the flag manifolds SO(n)/SO(2)×SO(n-3)

Invariant structures on homogeneous manifolds are of fundamental importance in differential geometry. Recall that an affinor structure F (i.e., a tensor field F of type (1,1)) on a homogeneous manifold G/H is called invariant (with respect to G) if for any g ∈ G we have dτ(g)◦F = F ◦dτ(g), where τ(g)(xH)= (gx)H . An important place among homogeneous manifolds is occupied by homogeneousΦ-spaces ...

متن کامل

2 00 2 Derivation of Gödel - type metrics with isometry group SO ( 2 , 1 ) × SO ( 2 ) × R Antonio

A class of metrics with isometry group SO(2, 1) × SO(2) × ℜ is derived. Gödel solution belongs to it , and is the only case corresponding to the stress-energy tensor of a perfect fluid.

متن کامل

Cartan-decomposition Subgroups of So(2, N)

For G = SL(3, R) and G = SO(2, n), we give explicit, practical conditions that determine whether or not a closed, connected subgroup H of G has the property that there exists a compact subset C of G with CHC = G. To do this, we fix a Cartan decomposition G = KA + K of G, and then carry out an approximate calculation of (KHK) ∩ A + for each closed, connected subgroup H of G.

متن کامل

Forced Symmetry Breaking from SO(3) to SO(2) for Rotating Waves on the Sphere

In this article, we consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on the sphere that persists to a normally hyperbolic SO(2)-invariant manifold M(ε). We investigate the effects of this forced symmetry ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geophysical Research: Atmospheres

سال: 2019

ISSN: 2169-897X,2169-8996

DOI: 10.1029/2019jd030243